Ben de tumevarim ispatini ekleyeyim:
$n=1$ ise $\sin1=\frac{\sin{(\frac{1+1}2) \sin(\frac 12)}}{\sin\frac 12}$ dogru.
Simdi $n$ icin dogru oldugunu kabul edelim:
$\sin 1+\sin 2+\cdots+\sin n+ \sin(n+1)$
$=(\sin 1+\sin 2+\cdots+\sin n)+ \sin(n+1)$
$=\frac{\sin{(\frac{n+1}2) \sin(\frac n2)}}{\sin(\frac 12)}+\sin (n+1)$
$=\frac{\sin{(\frac{n+1}2) \sin(\frac n2)}+\sin (n+1)\sin(\frac 12)}{\sin(\frac 12)}$
Ust kismin $\sin{(\frac{(n+1)+1}2) \sin(\frac {n+1}2)}$ oldugunu gosterirsek, isimiz biter. Bu kisim da ilgilenenlere odev olsun.