Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
789 kez görüntülendi
Çember kareye homeomorftur fakat diffeomorf değildir. Gösteriniz.
Lisans Matematik kategorisinde (14 puan) tarafından 
tarafından düzenlendi | 789 kez görüntülendi
Kare (türevlenebilen) manifold değildir. Köşeleri var.
Homeomorfizma kısmı için Kare ve çemberi içiçe aynı merkezli (birbirini kesip kesmemesi önemsiz) merkezden dışa projeksiyon yap , dıştan içe projeksiyon da tersi olur. Formülü de yazılabilir.

Yanlış anlaşmaları önlemek adına:

Birisi bana böyle bir soru sorduğunda kendisine mutlaka "Kare demekle ne demek istiyorsun?" diye sorardım. Eğer kare dediği şeyin üstüne bir türevli yapı koymayı bilmiyorsa, tarifinin içinde türevli yapıya dair bir şey yoksa, o zaman bu soruya şöyle cevap verirdim.

Karenin üzerine türevli bir yapı konabilir. Kare türevli bir manifold yapılabilir. Üstelik o yapıyla çembere difeomorftur.
Hatta derin teoremler bize tüm 1 boyutlu, 2 boyutlu ve 3 boyutlu manifoldların üzerine türevli yapı konabileceğini (hem de tek bir biçimde) söylüyor. Boyut 4'te bu soru bizi Genelleştirilmiş Poincaré Sanısına götürüyor.

20,274 soru
21,803 cevap
73,476 yorum
2,428,604 kullanıcı