$f:\mathcal{C}[0,1]\to \mathbb{R}, f(x)=x(1)$ ve $a\in\mathcal{C}[0,1]$ olsun.
$$f, \,\ a\text{'da sürekli}$$
$$:\Leftrightarrow$$
$$(\forall\epsilon >0)(\exists\delta>0)(\forall x\in \mathcal{C}[0,1])(d_1(x,a)<\delta\Rightarrow d_2(f(x),f(a))<\epsilon)$$
$$\Leftrightarrow$$
$$(\forall\epsilon >0)(\exists\delta>0)(\forall x\in \mathcal{C}[0,1])\left(\left(\int_{0}^{1}|x(t)-a(t)|^2dt\right)^{\frac12}<\delta\Rightarrow |x(1)-a(1)|<\epsilon\right)$$
$$f, \,\ a\text{'da süreksiz}$$
$$:\Leftrightarrow$$
$$f, \,\ a\text{'da sürekli değil}$$
$$\Leftrightarrow$$
$$(\exists\epsilon >0)(\forall\delta>0)(\exists x\in \mathcal{C}[0,1])(d_1(x,a)<\delta \wedge d_2(f(x),f(a))\geq \epsilon)$$
$$\Leftrightarrow$$
$$(\exists\epsilon >0)(\forall\delta>0)(\exists x\in \mathcal{C}[0,1])\left(\left(\int_{0}^{1}|x(t)-a(t)|^2dt\right)^{\frac12}<\delta\wedge |x(1)-a(1)|\geq\epsilon\right)$$