Yatay asimptot fonksiyonun limitinin sonsuzdaki değerine eşuttir.O zaman $lim_{x \to \infty} \frac{x}{n}.(e^{\frac{m}{x}}-1)=3$ gelir.Burada yerine sonsuz koyduğumuzda $\infty.0$ belirsizliği gelir.İfadeyi su şekilde yazarsak.
$lim_{x \to \infty} \frac{(e^{\frac{m}{x}}-1)}{\frac{n}{x}}=3$ .Limit $0/0$ gelir.Bir kere Hopital yaparsak.
$lim_{x \to \infty} \frac{(\frac{-m}{x^2}).e^{\frac{m}{x}}}{\frac{-n}{x^2}}=3=\frac{m}{n}$ gelir.