\begin{equation}\lim _{n\rightarrow \infty }\sum _{k=1}^{n}\left( \dfrac {1} {\left( 2k\right) ^{3}-2k}\right) = \lim _{n\rightarrow \infty }\sum _{k=1}^{n}\left[ \dfrac {1} {\left( 2k\right) \left( 2k+1\right) \left( 2k-1\right) }\right] \end{equation}
\begin{equation}\ =lim _{n\rightarrow \infty }\sum _{k=1}^{n}\left[ \dfrac {\left( -1\right) } {2k}+\dfrac {\left( \dfrac {1} {2}\right) } {2k+1}+\dfrac {\left( \dfrac {1} {2}\right) } {2k-1}\right] \end{equation}
\begin{equation}\ = lim _{n\rightarrow \infty }\left[ \cdot \sum _{k=1}^{n}\dfrac {1} {2k}+\sum _{k=1}^{n}\dfrac {\left( \dfrac {1} {2}\right) } {2k+1}+\sum _{k=1}^{n}\dfrac {\left( \dfrac {1} {2}\right) } {2k-1}\right] \end{equation}
limite geçersek ;
\begin{equation}\ =\left[ -\sum _{k=1}^{\infty }\dfrac {1} {2k}+\sum _{k=1}^{\infty }\dfrac {\left( \dfrac {1} {2}\right) } {2k+1}+\sum _{k=1}^{\infty }\dfrac {\left( \dfrac {1} {2}\right) } {2k-1}\right] \end{equation}
serileri açalım ;
\begin{equation}\ =\left[ \left( -\dfrac {1} {2}-\dfrac {1} {4}-\dfrac {1} {6 }-\ldots \right) +\dfrac {1} {2}\left( \dfrac {1} {3}+\dfrac {1} {5}+\dfrac {1} {7}+\ldots \right) +\dfrac {1} {2}\left( 1+\dfrac {1} {3}+\dfrac {1} {5}+\dfrac {1} {7}+\ldots \right) \right] \end{equation}
düzenleyelim ;
\begin{equation}\ = \left[ \left( -\dfrac {1} {2}-\dfrac {1} {4}-\dfrac {1} {6}-\ldots \right) +\dfrac {1} {2}\left( \dfrac {1} {3}+\dfrac {1} {5}+\dfrac {1} {7}+\ldots \right) +\dfrac {1} {2}\left( \dfrac {1} {3}+\dfrac {1} {5}+\dfrac {1} {7}+\ldots \right) +\dfrac {1} {2}\right] \end{equation}
\begin{equation}\ = \left[ \left( -\dfrac {1} {2}-\dfrac {1} {4}-\dfrac {1} {6}-\ldots \right) +\left( \dfrac {1} {3}+\dfrac {1} {5}+\dfrac {1} {7}+\ldots \right) +\dfrac {1} {2} +1-1\right] \end{equation}
\begin{equation}\ = \left[ \left( 1-\dfrac {1} {2}+\dfrac {1} {3}-\dfrac {1} {4}+\dfrac {1} {5}-\dfrac {1} {6}+\dfrac {1} {7}-\ldots \right) -\dfrac {1} {2}\right] \end{equation}
tekrar toplam sembolüyle yazalım;
\begin{equation}\ = \left( \sum _{m=1}^{\infty }\dfrac {\left( -1\right) ^{m+1}} {m}\right) -\dfrac {1} {2} olur. \end{equation}
\begin{equation}\sum _{m=1}^{\infty }\dfrac {\left( -1\right) ^{m+1}} {m} \end{equation}
serisi Mercator serisinin özel halidir. Ve \begin{equation}\sum _{m=1}^{\infty }\dfrac {\left( -1\right) ^{m+1}} {m} = \ln 2\end{equation}
olmak üzere;
\begin{equation}\lim _{n\rightarrow \infty }\sum _{k=1}^{n}\left( \dfrac {1} {\left( 2k\right) ^{3}-2k}\right) = \left( \ln 2\right) -\dfrac {1} {2} \end{equation}
olur.
Ben böyle olduğunu düşünüyorum. Yanlışlarım varsa affola..