1.) $\sum_{k=0}^n\binom{n}{n-k}x^{n-k}.p^{k}$ eğer $p^k=(y+z)^k$ olursa;
$p^k=\sum_{t=0}^k\binom{k}{k-t}y^{k-t}.z^t$
$\sum_{k=0}^n\sum_{t=0}^k\binom{n}{n-k}.\binom{k}{k-t}x^{n-k}.y^{k-t}.z^t$ olur.
2.)$(A+B)^n=\sum_{k=0}^n\binom{n}{n-k}A^{n-k}B^k........................*$ da
$A^{n-k}=(x+y)^{n-k}=\sum_{t=0}^{n-k}\binom{n-k}{n-k-t}x^{n-k-t}y^t$
$B^k=(z+t)^k=\sum_{p=0}^k\binom{k}{p}z^{k-p}.t^p$ Bu iki ifade $(*)$ da kullanılırsa formül elde edilir.