Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
888 kez görüntülendi
Lisans Matematik kategorisinde (3.7k puan) tarafından  | 888 kez görüntülendi

Herkesin bildigi gruplardir zannimca. Ornegin: $\{e\}$,$C_n$, $S_n$, $A_n$, $V=C_2\times C_2$, $\cdots$

Yok, oyle degil.

Lie grupları değil mi? $A_{n}$, $B_{n}$, $D_{n}$, $E_{6},E_{7},E_{8}$, $F_{4}$ gibi...

1 cevap

0 beğenilme 0 beğenilmeme

Tam bir tanımı mevcut değil. Hatırladığım kadarıyla klasik grup ismini de Hermann Weyl ortaya atmış. Matris Lie grupları olan $GL(n,\mathbb{R})$'ın kapalı alt grupları 'klasik gruplar' olarak geçiyor. Mesela,  $GL(n,\mathbb{R})$'ın kendisi, mesela  $O(n)$ ya da $U(n)$, Quaternion grubu olarak da  $GL(n,\mathbb{H})$, quaternionik uniter grup $Sp(n,\mathbb{R})$, kimileri $SO(2n)$ (benzer şekilde $SU(2n)$)  grubunu da alıyor. Klasik gruplar, Lie gruplarına geçiş gibi. Elimizi buraya atarsak Lie'ye girmemek mümkün değil. Ancak, niye klasik grup olarak isimlendirildikleri hakkında bir bilgim yok. Muhabbet esnasında, 19. yüzyılda bu gruplar oldukça yer edinmişler kendilerine, diye öğrenmiştim. Belki de klasikleşmişlerdir.

(26 puan) tarafından 

O zaman yorumumda hakliymisim :) 

Evet, herkesin bildiği (ya da bildiğini umduğumuz) gruplar :)

 "Exceptional ($E_6,E_7,E_8,F_4,G_2$)"   olmayanları (ve ayrıca bir form vs.yi koruyan matris gruplarını) düşünerek kullandığını sanıyorum.

20,275 soru
21,803 cevap
73,479 yorum
2,428,783 kullanıcı