Gerek Kısmı: $\beta$ bağıntısı ters simetrik ve $(x,y)\in \beta\cap \beta^{-1}$ olsun.
$\left.\begin{array}{rr} (x,y)\in \beta\cap \beta^{-1}\Rightarrow ((x,y)\in \beta)((x,y)\in \beta^{-1})\Rightarrow ((x,y)\in \beta)((y,x)\in \beta)\\ \\ \beta, \text{ ters simetrik} \end{array}\right\}\Rightarrow x=y \Rightarrow (x,y)\in I_X$
O halde $$\beta\cap \beta^{-1}\subseteq I_X.$$
Yeter Kısmı: $\beta\cap \beta^{-1}\subseteq I_X, \,\ (x,y)\in\beta \,\ $ ve $\,\ (y,x)\in \beta$ olsun.
$\left.\begin{array}{rr} (y,x)\in \beta\Rightarrow (x,y)\in\beta^{-1} \\ \\ (x,y)\in\beta \end{array}\right\}\Rightarrow (x,y)\in\beta\cap\beta^{-1}\overset {\text{Hipotez}}\Rightarrow (x,y)\in I_X\Rightarrow x=y.$
O halde $$\beta, \text{ ters simetrik}.$$