Aşağıdaki fonksiyonel denklemin bir çözümünü bulun. (yani eşitliğin sağ tarafının tanımladığı operatörün sabit fonkyiyonunu bulun). İlk bakılacak özel durum: $s=1$.
$$\psi(y+1)-\psi(y)+\frac{1}{(1+y)^{2s}} \psi\left(\frac{1}{1+y}\right)=$$
$$\frac{1}{(2+y)^{2s}} \psi\left(\frac{1}{2+y}\right)-\frac{1}{(2y+1)^{2s}} \psi\left(\frac{y}{2y+1}\right)$$
Not. Bu orijinal bir araştırma sorusudur ve cevabını bilmiyorum. Ama şayet ilgileniyorsanız aşağıdaki yarım-Eisenstein serisine benzer bir çözüm arayabilirsiniz.
$$\psi(y):=\sum_{n,m=1}^\infty \frac{1}{(2ny+m)^{2s}}$$
Bu arada denklemin sağ tarafına "Mayer operatörü" dersek, şu yarım-Eisenstein seris, Riemann zeta'nın sıfırlarına bu operatörün çekirdeğine düşer:
$$\psi(y):=\sum_{n,m=1}^\infty \frac{1}{(ny+m)^{2s}}$$
Yani bu fonksiyon şu fonksiyonel denklemi sağlar (ki buna Lewis fonksiyonel denklemi adı verilir)
$$\psi(y+1)-\psi(y)+\frac{1}{(1+y)^{2s}} \psi\left(\frac{1}{1+y}\right)=0$$