$e^x=\displaystyle\sum_{n=0}^{\infty}\dfrac{x^n}{n!}$
$sinx=\displaystyle\sum_{n=0}^{\infty}\dfrac{(-1)^n.(x)^{2n+1}}{(2n+1)!}$ yerlerine koyarsak
$\displaystyle\int \left[ \left(\displaystyle\sum_{n=0}^{\infty}\dfrac{x^n}{n!}\right)^{^{^{\left(\displaystyle\sum_{n=0}^{\infty}\dfrac{(-1)^n.(x)^{2n+1}}{(2n+1)!}\right)}}}\right].dx$ olur
ifadeyi yazarsak
$e^{sinx}=1+sinx+(sinx)^2/2!+(sinx)^3/3!+...............$
$e^{sinx}=1+\left(\displaystyle\sum_{n=0}^{\infty}\dfrac{(-1)^n.(x)^{2n+1}}{(2n+1)!}\right)+\left(\displaystyle\sum_{n=0}^{\infty}\dfrac{(-1)^n.(x)^{2n+1}}{(2n+1)!}\right)^2/2!+\left(\displaystyle\sum_{n=0}^{\infty}\dfrac{(-1)^n.(x)^{2n+1}}{(2n+1)!}\right)^3/3!+...........$
bir düzen yakalayabiliriz veya
http://matkafasi.com/76902/displaystyle-displaystyle-displaystyle-integral-hesabi
gibi notasyon atıp kaçabiliriz. Üstünde kafa yorucam gelişme kaydedersem eklerim.