$\left[ \dfrac {f\left( x\right) } {x}\right] ^{'}=2x+3$
$\int \left[ \dfrac {f\left( x\right) } {x}\right] ^{'}dx=\int 2x+3dx$
$\begin{align*} & \dfrac {f\left( x\right) } {x}=x^{2}+3x+c\\ & f\left( x\right) =x^{3}+3x^{2}+cx\\ & f\left( 1\right) =6,\\ & f\left( 1\right) =1+3+c=6,c=2\end{align*}$
$\begin{align*} & f\left( x\right) =x^{3}+3x^{2}+2x \\ & f\left( 2\right) =24\end{align*}$