Louville'nin Diferansiyel Cebir'e dâir teoremine göre bu integralin elemanter fonksiyonlar cinsinden çözümü mümkün değildir. Bu teoremin sonuçlarına göre, $f$ ve $g$ ($g$ sâbit değil) rasyonel fonksiyonlar olmak üzere, $$\int f(x)e^{g(x)}\,dx$$ ifâdesinin elemanter olması içün gerek-yeter şart, $$f(x)=R'(x)+R(x)g(x)$$ ifâdesini sağlayan $R(x)$ rasyonel fonksiyonunun mevcûdiyetidir.
Pek akademik kaynaklar sayılmazlar ama, kusura bakmayınız:
http://en.wikipedia.org/wiki/Liouville%27s_theorem_(differential_algebra)
http://www.sosmath.com/calculus/integration/fant/fant.html
Elemanter olmayan integrasyon başlığı altında birçok kaynak bulmak mümkündür. Yukarıdaki ilk bağlantıdan da görüldüğü üzere, sâdece temel integral bilgileriyle meseleyi anlamak pek kolay değildir. Bu meseleyi etraflıca ve herkesin anlayabileceği şekilde anlatacak biri çıkarsa çok güzel olur (Meselâ Matematik Dünyası'nın ileriki sayılarına alınabilir belki de...).
Yukarıda arkadaşların yaptığı "yaklaşımlar" ise dâimâ mümkündür, eyvallah. Sanırım arkadaşın sorduğu şey, elemanter şekilde integrasyondur; sorunun esprisi ancak bu durumda olmakta zîrâ.