$X$ bir topolojik uzay olsun. Rastgele bir $x_0 \in X$ için $x_0$'da temel grup $\pi_{1}(X,x_0)$'ı tanımlayalım.
Doğru anladıysam eğer bu grubun elemanları path-homotopy (yol homotopi?) sınıflarından oluşuyor öyle ki bu $x_0$ noktasında bir sürü path/yol tanımlayabilirim öyle ki bazılarını bazılarına dönüştürebilirim ama bunların bazıları bazılarına dönüştürülemez. Birbirine dönüştürebildiklerimi bir sınıfa atıyorum, böylece birkaç sınıfım oluyor ve bu sınıflar bu $\pi_{1}(X,x_0)$ grubunun elemanları.
Buraya kadar doğru mu anlamışım?
Eğer anladıysam şöyle bir sorum var, neden bu yollardan bazıları bazılarına dönüştürülemiyor? Ne zaman sadece bir sınıfım oluyor? Örneğin $R^n$ uzayında bir $x_0$ noktası alırsam $\pi_{1}(R^n,x_0)$ grubu tek elemanlıymış yani bu gruptaki bütün yollar birbirine dönüştürebiliyormuş. Bunun nedeni de anlamadığım başka bir nokta.
Umarım derdimi açıkça anlatabilmişimdir.