$$(k+2)!=(k+2)(k+1)!$$
$$(k+2)!=[(k+1)+1](k+1)!$$
$$(k+2)!=(k+1)(k+1)!+(k+1)!$$
$$\frac{(k+2)!-(k+1)!}{(k+1)!}=k+1$$ olur Bunu toplamda yerine yazarsak :
$$\sum_{k=0}^{n}\dfrac{(k+2)!-(k+1)!}{(k+1)!.(k+2)!}=\frac{1}{(k+1)!}-\frac{1}{(k+2)!}$$
$$\sum_{k=0}^{n}\left[\frac{1}{(k+1)!}-\frac{1}{(k+2)!}\right]=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{(n-1)!}-\frac{1}{n!}$$
$$\sum_{k=0}^{n}\left[\frac{1}{(k+1)!}-\frac{1}{(k+2)!}\right]=\frac{1}{1!}-\frac{1}{n!}$$ Buradan da $$\lim\limits_{n\to\infty}\left[\frac{1}{1!}-\frac{1}{n!}\right]=1$$ olacaktır.