$$\int_0^{\frac{\pi}{2}}\sin^2(\sin x)\,dx$$ ifadesinde $y=\sin x$ dönüşümü yapalım. Bu dönüşüm altında sınırlar: $0 \rightarrow 1$ olur. Yine bu dönüşümden, $$dx=\frac{dy}{\sqrt{1-y^2}}$$ alınır. Bunlar integralde yerine konursa, $$\int_0^{\frac{\pi}{2}}\sin^2(\sin x)\,dx=\int_0^1 \sin^2 y\frac{dy}{\sqrt{1-y^2}}$$ ifadesine ulaşılır.
Diğer terime de $y=\cos x$ dönüşümü yapılırsa, benzer şekilde, $$\int_0^{\frac{\pi}{2}}\cos^2(\cos x)\,dx=\int_0^1 \cos^2 y\frac{dy}{\sqrt{1-y^2}}$$ elde edilir.
Bu iki ifade toplanırsa,
$$\int_0^1 \sin^2 y\frac{dy}{\sqrt{1-y^2}}+\int_0^1 \cos^2 y\frac{dy}{\sqrt{1-y^2}}=\int_0^1 \frac{dy}{\sqrt{1-y^2}}=\arcsin 1-\arcsin 0=\frac{\pi}{2}$$ bulunur.
Böyle açabilirim.