$G$ çift mertebeden bir grup yani; $\mid G \mid=2m$ olacak şekilde bir $m$ pozitif tamsayısı vardır.
$e\neq a\in G$ olmak üzere $\mid G \mid =2m$ olduğundan $a^{2m}=e$. Buradan $(a^{m})^2=e$ elde edilir. $b=a^m$ diyelim. $b^2=e$ ise her iki tarafın $b^{-1}$ ile işlemlenmesi sonucu $b=b^{-1}$ elde ederiz.
Diğer soru: $\mid A\cup \{e\} \mid=\mid A\mid +1$ (çünkü $e\notin A$) olduğundan $A\cup \{e\}$ kümesi $G$'nin öz alt kümesi olur, yani eşitlik sağlanmaz. Çünkü $G$ çift mertebeden bir grup.