$sinx=y\Rightarrow cosxdx=dy\Rightarrow dx=\frac{1}{\sqrt{1-y^2}}dy$
$I_1=\int_{0}^{\frac{\pi}{2}}sin^2(sinx)dx=\int_{0}^{1} \frac{sin^2y}{\sqrt{1-y^2}}dy$
Benzer şekilde
$cosx=z\Rightarrow -sinxdx=dz\Rightarrow dx=-\frac{1}{\sqrt{1-y^2}}dz$
$I_2=\int_{0}^{\frac{\pi}{2}} cos^2(cosx)dx=\int_{1}^{0} \frac{-cos^2z}{\sqrt{1-z^2}}dz=\int_{0}^{1} \frac{cos^2z}{\sqrt{1-z^2}}dz=\int_{0}^{1} \frac{cos^2y}{\sqrt{1-y^2}}dy $
$I=I_1+I_2 \Rightarrow I=\int_{0}^{1} \frac{1}{\sqrt{1-y^2}}dy$ olur. Sonrası rutin.