$n\in\mathbb Z^{\ge3}$ olsun, $\boxed{\boxed{n^{n^{n^n}}-n^{n^n}}}$ sayısının $1989$ ile tam bölündüğünü gösteriniz.Bu soru için araştırma yaptım,http://math.stackexchange.com/questions/1572802/prove-that-nnnn-nnn-is-divisible-by-1989Buradaki tarzda cevaplar verilmiş ,bu cevabı açıklarmısınız hangi teoremler/teoriler kullanılmış, oradaki $\uparrow$ olan okların manası tam olarak nedir?