$V$ bir vektör uzayı olsun ve $V$'nin bir altkümesi olarak $\{v_1,v_2,\ldots,v_k\}$ alalım. Bu kümenin gerdiği uzayı $U$ ile gösterelim. Şimdi bu kümedeki vektörlerin yerlerini değiştirelim. Ortaya çıkan yeni kümenin gerdiği uzay değişmez. Aynı şekilde ilk kümedeki bazı vektörlerin skaler katını alalım ve yeni küme oluşturalım. Bu yeni kümenin gerdiği uzayda $U$ olur. Ya da ilk vektör kümesindeki bazı vektörler ile bu küme içindeki bazı vektörlerin skaler katını alıp toplayalım. Yine gerilen uzay değişmeyecektir. Ve başka nasıl bir işlem yapalım ki; elde edilen yeni kümenin gerdiği uzay $U$ olsun? (Sorunun temelinde bunun yattıgını düşünüyorum).
Not: Saçmaladım ise affoluna.