1) $A=B$ iken $OBEB(A,B)=OKEK(A,B)=n=m=A=B$ olacağından $A+B=n+m$ denebilir.
2) $A<B$ ise $OBEB(A,B)=n\Rightarrow A=a_1.n,\quad B=b_1.n$ olacak şekilde $OBEB(a_1,b_1)=1$ ve $a_1<b_1,\quad a_1,b_1\in N$ olan sayılar vardır. Ayrıca $OKEK(A,B)=m\Rightarrow A.a_2=m,\quad B.b_2=m$ olan $a_2>b_2,\quad a_2,b_2\in N$ sayıları vardır. Bu durumda ise $n\leq A<B\leq m$ olup $A+B$'nin en büyük değeri $A+m$ ve en küçük değeri ise $n+B$ dir.