Ikinciyi kabul edelim ve $R$ halkasindan $(x)\ne (1)$ olacak sekilde bir eleman alalim. Bu elemana karsilik gelen $B_x=A/(x)$ bolum halkasini ve dogal $A \to B_x$ homomorfizmasini alalim. Bu halkanin cekirdegi $(x)$ olur ve "kabulumuzden" dolayi homomorfizmamiz birebir oldugundan $x=0$ olmali.
Bu bize $x\ne 0$ haricinde $(x)=(1)$ oldugunu verir. Yani sifir olmayan her elemanin tersi vardir. Dolayisiyla da $R$ bir cisim olur.
Ilkini kabul edelim. Bir cisimin iki adet ideali vardir. $(0)$ ve $(1)$. (Bu cok acik). Herhangi homomorfizmanin cekirdegi bir ideal olacak. Cekirdegin $(1)$ olmasi, tum elemanlarin sifira gitmesini gerektirir, bu sifir olmayan halka disinda mumkun degil cunku $1 \to 1$ olmali. Bu da cekirdegin $(0)$ olmasini zorunlu kilar ve dolayisiyla homomorfizm birebir olur.