$\left( u-v\right) ^{2}\geq 0$ eşitsizliğinden, $2uv\leq u^{2}+v^{2}$ elde edilir. Burada, $u=a_kb_m$ ve $v=a_mb_k$ koyalım;
$$2a_kb_ka_mb_m\leq a^{2}_{k}b^{2}_{n}+a^{2}_{m}b^{2}_{k}$$
$k=1,2,,...,n$ ve $m=1,2,...,n$ yazarsak toplarsak, $2\left(\displaystyle\sum ^{n}_{k=1}a_{k}b_{k}\right) \left(\displaystyle \sum ^{n}_{m=1}a_{m}b_{m}\right) \leq 2\left( \displaystyle\sum ^{n}_{k=1}a^{2}_{k}\right) \left(\displaystyle \sum ^{n}_{m=1}b^{2}_{m}\right) $ ve buradan da,
$\left( \displaystyle\sum ^{n}_{k=1}a_{k}b_{k}\right) ^{2}\leq \left(\displaystyle \sum ^{n}_{k=1}a^{2}_{k}\right) \left( \displaystyle\sum ^{n}_{k=1}b^{2}_{k}\right)$ olur.
Benzer şekilde, $2uv\leq u^{2}+v^{2}$ eşitsizliğinde $u=x\left( t\right) y\left( s\right)$ ve $v=x\left( s\right) y\left( t\right)$, $\left( s\in \left( a,b\right) ,t\in \left( a,b\right) \right) $ koyarsak,
$2x\left( t\right) y\left( t\right) x\left( s\right) y\left( s\right) \leq x^{2}\left( t\right) y^{2}\left( s\right) +x^{2}\left( s\right) y^{2}\left( t\right) $ olur.
$(a,b)\times(a,b)$ karesi üzerinden integral alınırsa,
$\left(\displaystyle \int ^{b}_{a}x\left( t\right) y\left( t\right) dt\right) ^{2}\leq \left(\displaystyle \int ^{b}_{a}x^{2}\left( t\right) dt\right) \left( \displaystyle\int ^{b}_{a}y^{2}\left( t\right) dt\right)$
elde edilir.