Gerek ve yeter koşul dendiğine göre iki adımda ispatlayacağız.
$-----------------------------------$
İspat: $(\Rightarrow :)$ $A\in\mathcal{K}_d$ ve $x\notin A$ olsun.
$\left.\begin{array}{rr} A\in\mathcal{K}_d\Rightarrow \setminus A\in\tau_d \\ \\ x\notin A\Rightarrow x\in \setminus A \end{array}\right\}\Rightarrow (\exists \epsilon >0)(B(x,\epsilon)\subseteq \setminus A)$
$\Rightarrow (\exists \epsilon >0)\left(B(x,\epsilon)\cap A=\emptyset\right)$
$\Rightarrow (\exists \epsilon >0)\left(\left(B(x,\epsilon)\setminus\{x\}\right)\cap A=\emptyset\right)$
$\Rightarrow x\notin D(A).$
$-----------------------------------$
$(\Leftarrow:)$ $D(A)\subseteq A$ ve $x\in \setminus A$ olsun. $(\setminus A$ açık olduğunu gösterirsek ispat biter.$)$
$\left.\begin{array}{rr} D(A)\subseteq A\\ \\ x\in \setminus A\Rightarrow x\notin A\end{array}\right\}\Rightarrow x\notin D(A)$
$\left.\begin{array}{rr} \Rightarrow (\exists \epsilon>0)((B(x,\epsilon)\setminus\{x\})\cap A=\emptyset) \\ \\ x\in \setminus A\Rightarrow x\notin A \end{array}\right\}\Rightarrow $
$\Rightarrow (\exists \epsilon>0)(B(x,\epsilon)\cap A=\emptyset)$
$\Rightarrow (\exists \epsilon>0)(B(x,\epsilon)\subseteq \setminus A)$
$\Rightarrow x\in (\setminus A)^{\circ}$
Yani
$$\setminus A\subseteq (\setminus A)^{\circ}\ldots (1) $$ elde edilir. Öte yandan $$(\setminus A)^{\circ}\subseteq \setminus A\ldots (2)$$ daima doğrudur.
$$ (1),(2) \Rightarrow \setminus A=(\setminus A)^{\circ}\Rightarrow \setminus A\in\tau_d\Rightarrow A\in \mathcal{K}_d.$$ $-----------------------------------$