Bu ornegi su sitede bulmustum
https://en.wikipedia.org/wiki/Algebraic_number
Ordaki diger ornek
$\left\{\tan \left(\frac{3 \pi }{16}\right),\tan \left(\frac{7 \pi }{16}\right),\tan
\left(\frac{11 \pi }{16}\right),\tan \left(\frac{15 \pi }{16}\right)\right\}$ sayilari $x^4-4x^3-6x^2+4x+1$ denkleminin koku ve cebirsel ve irrasyonel. Ben bu polinomun koklerini buldugum zaman
$\left\{ 1-\sqrt{2}-\sqrt{2 \left(2-\sqrt{2}\right)},
1-\sqrt{2}+\sqrt{2 \left(2-\sqrt{2}\right)}, 1+\sqrt{2}-\sqrt{2
\left(2+\sqrt{2}\right)}, 1+\sqrt{2}+\sqrt{2
\left(2+\sqrt{2}\right)}\right\}$
Yani
$\tan \left(\frac{3 \pi }{16}\right)= 1-\sqrt{2}+\sqrt{2 \left(2-\sqrt{2}\right)}$
$\tan \left(\frac{7 \pi }{16}\right)= 1+\sqrt{2}+\sqrt{2 \left(2+\sqrt{2}\right)},$
$\tan \left(\frac{11 \pi }{16}\right)= 1-\sqrt{2}-\sqrt{2 \left(2-\sqrt{2}\right)},$
$\tan \left(\frac{15 \pi }{16}\right)= 1+\sqrt{2}-\sqrt{2 \left(2+\sqrt{2}\right)},$
Benim sormak istedigim $\cos(\frac{\pi}{7}), \cos(\frac{3\pi}{7}), \cos(\frac{5\pi}{7})$ sayilari radikallerle ifade edilebilir mi?
WolframAlpha sunu veriyor:
$\cos(\frac{\pi}{7})=-\frac{1}{2} (-1)^{6/7} (1 + (-1)^{2/7})$