$(X,d_1),(X,d_2)$ metrik uzaylar olmak üzere
$$d_1\overset{L}{\sim} d_2\Rightarrow d_1\overset{D}{\sim} d_2\Rightarrow d_1\overset{T}{\sim} d_2$$ olduğunu gösteriniz.
$$-------------------------------------------$$
Tanım (Lipschitz Denk Metrikler): $(X,d_1),(X,d_2)$ metrik uzaylar olmak üzere
$$d_1\overset{L}{\sim} d_2:\Leftrightarrow (\exists \lambda,\mu >0)(\forall x,y\in X)\left(\lambda d_1(x,y)\leq d_2(x,y)\leq \mu d_1(x,y)\right)$$
$$-------------------------------------------$$
Tanım (Düzgün Denk Metrikler): $(X,d_1),(X,d_2)$ metrik uzaylar olmak üzere
$$d_1\overset{D}{\sim}d_2$$
$$:\Leftrightarrow$$
$$ (\forall\epsilon>0)(\exists\delta_1,\delta_2>0)(\forall x,y\in X)[(d_1(x,y)<\delta_1\Rightarrow d_2(x,y)<\epsilon)\wedge (d_2(x,y)<\delta_2\Rightarrow d_1(x,y)<\epsilon)]$$
$$-------------------------------------------$$
Tanım: $(X,d_1),(X,d_2)$ metrik uzaylar olmak üzere
$$d_1\overset{T}{\sim} d_2:\Leftrightarrow \tau_{d_1}=\tau_{d_2}$$
$$------------------------------------------$$
Not: $(X,d)$ metrik uzay ve $A\subseteq X$ olmak üzere
$$A, d\text{-açık}:\Leftrightarrow (\forall a\in A)(\exists\epsilon >0)(B(a,\epsilon)\subseteq A) $$
$$\tau_d:=\{A|(A\subseteq X)(A, d\text{-açık})\}$$
$$-------------------------------------------$$