$d_1\overset{L}{\sim} d_2 $ olsun. Amacımız $$(\forall\epsilon>0)(\exists \delta>0) (\forall x,y \in X)(d_1(x,y)< \delta \Rightarrow d_2(x,y)< \epsilon)(d_2(x,y)<\delta\Rightarrow d_1(x,y)<\epsilon)$$ önermesinin doğru olduğunu göstermek.
$\epsilon > 0$ verilmiş olsun.
$\left.\begin{array}{rr} d_1\overset{L}{\sim} d_2 \Rightarrow (\exists \lambda, \mu>0) (\forall x,y \in X ) ( \lambda\cdot d_1(x,y) \leq d_2(x,y) \leq \mu\cdot d_1(x,y)) \\ \\ \left(\delta_1:= \frac{\epsilon}{\mu}\right) \left(\delta_2:=\epsilon\cdot \lambda\right) \end{array}\right\}\overset{\epsilon>0}{\Rightarrow}$
$\left.\begin{array}{rr}\Rightarrow (\delta_1,\delta_2 >0) (\forall x,y \in X)(d_1(x,y)< \delta_1 \Rightarrow d_2(x,y)<\epsilon)(d_2(x,y)<\delta_2 \Rightarrow d_1(x,y)<\epsilon) \\ \\ \delta:=\min\{\delta_1,\delta_2\}\end{array}\right\}\Rightarrow$
$\Rightarrow (\exists \delta>0) (\forall x,y \in X)(d_1(x,y)< \delta\Rightarrow d_2(x,y)< \epsilon)(d_2(x,y)<\delta \Rightarrow d_1(x,y)<\epsilon).$