Merhabalar;
$\text{Soru:}$
Sadece $1$ ve $0$ rakamları kullanılarak en fazla $8$ basamaklı tüm sayılar yazılıyor. Buna göre yazılan tüm bu sayılarda $1$ rakamı kaç kez kullanılmıştır?
$\text{Denediklerim:}$
En fazla $8$ basamaklı dediği için $0$'ın konumunu düşünmeden $2^8$ tane bu şekilde sayı vardır diye düşündüm. Ancak buradan sonra $1$ sayısının kaç kere denk geldiğini bulmak için aklıma pek yaratıcı bir şeyler gelmedi.
Belki $1.$ basamaktan $8.$ basamağa kadar $1$'lerin sayısını bularak bir dizi oluşturabilirim diye düşündüm, ama genel terimi bulabileceğim açık bir hal aldıramadım ve çok uzun geldi.
Kitabımdaki çözümde ise her $x$ sayısına $11111111-x$ sayısı denk getirilmiş ve $(x,11111111-x)$ sayı çiftlerinin sayısı ondan sonra da bu sayı çiftlerindeki $1$ sayısının $8$ olduğu söylenerek $8\cdot 128=1024$ bulunmuş. Ben buradaki mantığı tam olarak anlamadım. Neden $x$'e $11111111-x$ sayısını denk getirdik? (Kitabımda da fazla açılmamış konunun mantığı, hatta genel olarak çözümlerin pek çoğu böyle:()