$\lim\limits_{n\to \infty}|\sqrt[n]{a_n}|=\lim\limits_{n\to \infty}\left| \sqrt[n]{\dfrac{(x^2-1)^n}{8^n}}\right| =\lim\limits_{n\to \infty}\left| \dfrac{(x^2-1)}{8}\right|=\left| \dfrac{(x^2-1)}{8}\right|<1$
$|x^2-1|<8\Longrightarrow$ $-8<x^2-1<8\Longrightarrow$ $-7<x^2<9\Longrightarrow$
$-3<x<3$
Sinirlari test et.
$x=-3$ iken yakinsak mi ona bak. Yakinsaksa $-3\leq x<3$ al, yoksa $-3<x<3$ al.
$x=3$ iken yakinsak mi ona bak. Yakinsaksa $-3< x\leq3$ al, yoksa $-3<x<3$ al.
Hadi ona da bakalim.
$x=3$ icin:
$$\sum ^{\infty }_{n=1}\dfrac{(3^2-1)^n}{8^n}=\sum ^{\infty }_{n=1}1$$ limit sifir olmadigindan iraksaklik testine gore seri iraksaktir.
$x=-3$ icin:
$$\sum ^{\infty }_{n=1}\dfrac{((-3)^2-1)^n}{8^n}=\sum ^{\infty }_{n=1}1$$ limit sifir olmadigindan iraksaklik testine gore seri iraksaktir.
Bundan dolayi yakinsaklik araligi $-3<x<3$ olur.