$T_1)$ $\emptyset,X\overset{?}{\in}\tau(\mathcal{S})$
$\left.\begin{array}{rr} \ \ (\mathcal{S}^*:=\{ \text{ }\}\subseteq \mathcal{S})(|\mathcal{S}^*|=|\{ \text{ }\}|=0<\aleph_0)\Rightarrow \cap \mathcal{S}^*=\cap\emptyset\in\mathcal{B} \\ \\ \cap \emptyset =X \end{array}\right\}\Rightarrow X\in\mathcal{B}$
$\left.\begin{array}{rr} \Rightarrow \mathcal{B}^*:=\{X\}\subseteq \mathcal{B}\Rightarrow \cup\mathcal{B}^*\in\tau (\mathcal{S}) \\ \\ \cup\mathcal{B}^*=X \end{array}\right\}\Rightarrow X\in\tau (\mathcal{S}).$
$\left.\begin{array}{rr} \mathcal{B}^*:=\{ \text{ } \}\subseteq \mathcal{B}\Rightarrow \cup\mathcal{B}^*\in\tau (\mathcal{S}) \\ \\ \cup\mathcal{B}^*=\emptyset \end{array}\right\}\Rightarrow \emptyset\in\tau (\mathcal{S}).$