$(X,\tau_1), T_3 \text{ uzayı ve } \ (Y,\tau_2), T_3 \text{ uzayı olsun.}$
$\left. \begin{array}{rr} (X,\tau_1), T_3 \text{uzayı }\Rightarrow (X,\tau_1), \ \text{regüler uzay}\Rightarrow(\exists U_1\in\mathcal{U_1} (F_1)) (\exists V_1\in\mathcal{U_1} (x)) (U_1\cap V_1=\emptyset) \\ (Y,\tau_2), T_3 \text{uzayı }\Rightarrow (Y,\tau_2), \ \text{regüler uzay}\Rightarrow(\exists U_2\in\mathcal{U_2} (F_2)) (\exists V_2\in\mathcal {U_2} (y)) (U_2\cap V_2=\emptyset) \\ (W_1:=U_1\times U_2) (W_2:=V_1\times V_2) \end{array}\right\}\Rightarrow$
$\Rightarrow (W_1\in\mathcal{U} (F_1\times F_2)) (W_2\in\mathcal{U} (x,y)) (W_1\cap W_2=\emptyset) ... \text{(1)}$
$-------------------------------------------$
$\left. \begin{array}{rr} (X,\tau_1), T_3 \text{uzayı }\Rightarrow (X,\tau_1), T_1 \ \text{uzay}\Rightarrow(\exists U_1\in\mathcal{U_1} (x_1)) (\exists V_1\in\mathcal{U_1} (x_2) (x_2\notin U_1\wedge x_1\notin V_1 ) \\ (Y,\tau_2), T_3 \text{uzayı }\Rightarrow (Y,\tau_2), T_1 \ \text{uzay }\Rightarrow(\exists U_2\in\mathcal{U_2} (y_1)) (\exists V_2\in\mathcal {U_2} (y_2)) (y_2\notin U_2\wedge y_1\notin V_2) \\ ((x_1,y_1)\neq (x_2,y_2)) (W_1:=U_1\times U_2) (W_2:=V_1\times V_2) \end{array}\right\}\Rightarrow$
$\Rightarrow (W_1\in\mathcal{U} (x_1,y_1)) (W_2\in\mathcal{U_2} (x_2,y_2)) ((x_2,y_2)\notin W_1\wedge (x_1,y_1)\notin W_2) ... \text{(2)}$
$-------------------------------------------$
$(1) \ \text{ve } (2)\Rightarrow (X\times Y,\tau_1\star \tau_2), T_3 \ \text{uzayı }$.