Fermat, her $n$ doğal sayısı için $F_n = 2^{2^n} + 1$ sayısının asal olduğunu iddia etmişti. $n=0,1,2,3,4$ için için $F_n$ nin asal olduğunu biliyoruz. Yaklaşık $100$ yıl sonra Euler $F_5 = 2^{32}+1 = 4294967297$ sayısının bileşik olduğunu göstererek Fermat'nın sanısını çürütmüştü. Bu sayı $641$ ile bölünüyordu.
Şu soru birçoğumuzun aklına gelmiştir: Acaba Euler kalemi kağıdı eline alıp hunharca $2,3,5,7,11, \dots , 641$ asallarına bölünebilirliği mi test etti? Yoksa eşi benzeri görülmemiş yüksek matematik zekasıyla bu işlemleri hızlandırmanın bir yolunu mu bulmuştu?
Böyle bir hızlı yol var. Euler, birazdan aşağıda açıklayacağım yöntemle mi $641$ ile bölünebilmeyi düşündü yoksa daha farklı işlemler mi kullandı bilemiyorum. Sadece bir teori olarak, ''şöyle yapmış olabilir'' diye düşündüm. Tarihsel belgelere ya da kaynaklara ulaşabilenler yorum/cevap olarak ekleyebilirler. Başlayalım:
$2^{32}+1$ sayısı bir $p$ asal sayısına bölünüyorsa $2^{32}+1 \equiv 0 \pmod{p}$ olup $2^{64} \equiv 1 \pmod{p}$ olur. O halde $2$ nin $\mod p$ içindeki mertebesi ya $64$ tür ya da $64$ ün bir pozitif bölenidir. Fakat $1,2,4,\dots, 32$ gibi değerlerden biri mertebe olsaydı $2^{32}\equiv 1 \pmod{p}$ olurdu. Bu ise $2^{32}\equiv -1 \pmod{p}$ ile çelişir. Demek ki $2$ nin mertebesi gerçekten $64$ tür. Şimdi Fermat teoreminden $2^{p-1}\equiv 1 \pmod{p}$ olduğundan dolayı $64|p-1$ dir. Yani $p=64k+1$ formunda bir asal sayı olmalıdır ($k\in \mathbb Z^{+}$). Elbette $k$ tam sayısı da her değeri alamaz. Örneğin $k \equiv 2 \pmod {3}$ olsa $p=64k+1 \equiv 0 \pmod{3}$; $k \equiv 1 \pmod {5}$ olsa $p=64k+1 \equiv 0 \pmod{5}$ olup $p$ bileşik sayı olurdu. $k$ için farklı modlarda başka kısıtlamalar da getirebiliriz ancak bu problem özelinde ihtiyacımız olmayacak. Şimdilik sadece $k\not \in \{ 1, 2, 5, 6, 8\}$ olduğunu söyleyelim.
$\bullet $ $k=3$ için $p=64\cdot 3 +1 = 193$ asal sayısı elde edilir. $F_5= 4294967297$ bu sayı ile bölünmüyor.
$\bullet $ $k=4$ için $p=64\cdot 4 +1 = 257$ asal sayısı elde edilir. $F_5= 4294967297$ bu sayı ile bölünmüyor.
$\bullet $ $k=7$ için $p=64\cdot 7 +1 = 449 $ asal sayısı elde edilir. $F_5= 4294967297$ bu sayı ile bölünmüyor.
$\bullet $ $k=9$ için $p=64\cdot 9 +1 = 577$ asal sayısı elde edilir. $F_5= 4294967297$ bu sayı ile bölünmüyor.
$\bullet $ $k=10$ için $p=64\cdot 10 +1 = 641$ asal sayısı elde edilir. $F_5= 4294967297$ bu sayı ile tam bölünüyor. Gerçekten $F_5= 4294967297 = 641\cdot 6700417 $ biçiminde çarpanlara ayrılıyor. İkinci çarpanımız da bir asal sayıdır ve o da elbette $6700417 =64k+1$ formundadır.
Not: İki kare farkı vb özdeşlikler kullanılarak $2^{32}+1$ in çarpanlara ayrıldığını görmüştüm. Ancak bu tür bir çözüm $2^{32}+1$ sayısının bileşik olduğunu, $641$'e bölünebildiğini zaten biliyorsanız girişmeye cesaret edeceğiniz bir yöntemdir. Önemli olan $2^{32}+1$ sayısının bileşik olduğuna dair Euler'in ilk fikirleri neydi? Benim teorim, Euler mertebe kavramını kullanarak ve biraz hesaplama yapmayı göze alarak yukarıdakine benzer işlemlerle sonuca ulaşmıştır. $F_5$'i sadece $5$ tane asala bölerek sonuca ulaştığım için kısa olarak kabul edilebilir. İşin gerçeği nedir bilmiyorum, umarım O'nun gibi akıl yürütme kullanmışımdır. Bilgilerinizi paylaşabilirsiniz, teşekkürler...