Kanıt: $(\Leftarrow):$ Açık veya şöyle kısa bir kanıt verebiliriz:
$\left.\begin{array}{rr} V:=cl(A) \\ \\ \text{Hipotez} \end{array}\right\}\Rightarrow (\exists U\in\tau)(\exists V^c\in\tau)(A=U\cap V)\Rightarrow A\in LC(X).$
$(\Rightarrow):$ $A\in LC(X)$ olsun.
$A\in LC(X)\Rightarrow (\exists U\in\tau)(\exists V^c\in\tau)(A=U\cap V)$
$\Rightarrow (\exists U\in\tau)(A\subseteq cl(A)=cl(U\cap V)\subseteq cl(U)\cap cl(V)=cl(U)\cap V)$
$\Rightarrow (\exists U\in\tau)(A=U\cap A\subseteq U\cap cl(A)=U\cap cl(U\cap V)\subseteq U\cap (cl(U)\cap cl(V))=U\cap (cl(U)\cap V)=U\cap V=A)$
$\Rightarrow (\exists U\in\tau)(A=U\cap cl(A)).$