$(X,\tau)$ ayrılabilir ve $Y \in \tau$ olsun.
$\left. \begin{array}{rr} (X,\tau) \text{ ayrılabilir} \Rightarrow (\exists A \subseteq X) (|A| \leq \aleph_{0} \wedge \overline{A}=X) \\ \\ Y \in \tau \end{array} \right\}\Rightarrow $
$\left.\begin{array}{rr} \Rightarrow (A\cap Y\subseteq Y)(|A\cap Y|\leq |A|\leq\aleph_{0} \wedge Y=X\cap Y=\overline{A}\cap Y\subseteq \overline{A \cap Y} \\ \\ B:=A\cap Y\end{array} \right\}\Rightarrow$
$\Rightarrow (B \subseteq Y) (|B| \leq \aleph_{0} \wedge Y=\overline{B}).$