$( X, \tau) $ topolojik uzay ve $A \subseteq X$ olsun.
$\tau(A):=\{U\cup (V\cap A)|U,V\in\tau\}$ ailesi $X$ kümesi üzerinde topolojidir.
$T_1)$ $\emptyset,X \overset{?}{\in} \tau(A).$
$\left.\begin{array}{rr} (U:=\emptyset)(V:=\emptyset) \Rightarrow (U,V\in\tau)(U\cup ( V\cap A)=\emptyset\cup (\emptyset \cap A)=\emptyset) \\ \\ \tau(A):=\{U\cup (V\cap A)|U,V\in\tau \}\end{array}\right\}\Rightarrow \emptyset \in\tau(A).$
$\left.\begin{array}{rr} (U:=X)(V\in\tau) \Rightarrow (U,V\in\tau)(U\cup ( V\cap A)=X\cup (V\cap A)=X) \\ \\ \tau(A):=\{U\cup (V\cap A)|U,V\in\tau \}\end{array}\right\}\Rightarrow X \in\tau(A).$
$T_2)$ $M,N \in \tau (A)$ olsun. (Amacımız $M \cap N \in \tau(A)$ olduğunu göstermek.)
$\left.\begin{array}{rr} M \in \tau(A) \Rightarrow ( \exists U_1 , V_1 \in \tau ) ( M= U_1 \cup (V_1 \cap A ))\\ \\ N \in \tau(A) \Rightarrow ( \exists U_2 , V_2 \in \tau ) ( N= U_2 \cup (V_2 \cap A )) \end{array}\right\}\Rightarrow$
$ \Rightarrow M \cap N = [ U_1 \cup (V_1 \cap A ) ] \cap [ U_2 \cup ( V_2 \cap A)] $
$ =\{ [ U_1 \cup ( V_1 \cap A ) ] \cap U_2 \} \cup \{ [ U_1 \cup ( V_1 \cap A ) ] \cap ( V_2 \cap A ) \} $
$ = [ ( U_1 \cap U_2 ) \cup (( V_1 \cap A ) \cap U_2) ] \cup [ ( U_1 \cap ( V_2 \cap A ) ) \cup ( V_1 \cap V_2 \cap A ) ]$
$ = U_1 \cap U_2 \cup (( V_1 \cap U_2) \cap A ) \cup ( U_1 \cap V_2 ) \cap A \cup ( V_1 \cap V_2 \cap A ) $
$ \left.\begin{array}{rr} = ( U_1 \cap U_2 ) \cup ( ( V_1 \cap U_2) \cup (U_1 \cap V_2 ) \cup ( V_1 \cap V_2 )) \cap A \\ \\ U:= U_1 \cap U_2 \\ \\ V:=(V_1 \cap U_2 ) \cup (U_1 \cap V_2 ) \cup ( V_1 \cap V_2) \end{array}\right\}\Rightarrow$
$ \Rightarrow ( U, V \in \tau ) ( M \cap N = U \cup ( V \cap A )) $
$ \Rightarrow M \cap N \in \tau (A).$
$T_3)$ $\mathcal{A} \subseteq \tau(A)$ olsun. (Amacımız $\bigcup\mathcal{A} \in \tau(A)$ olduğunu göstermek.)
$\emptyset \in \mathcal{A} \Rightarrow \bigcup \mathcal{A} =\emptyset \in \tau(A) $
$ X \in \mathcal{A} \Rightarrow \bigcup \mathcal{A} = X \in \tau(A)$
$ \emptyset , X \notin \mathcal{A} \Rightarrow \{ U \cup ( V \cap A ) | U,V \in \tau \}$
$\bigcup \mathcal{A} = \bigcup \{ U \cup ( V \cap A ) | U,V \in \tau \} \Rightarrow \bigcup \mathcal{A} \in \tau(A) $
$ \tau(A) , \text{ X kümesi üzerinde bir topolojidir.}$