$g(x)$ bir noktada türevlenemez olduğu halde $(f\circ g)(x)$ türevlenebilir midir?
Örnek: $f(x)=x^2$ olsun ve $g(x)=|x|$ olsun $\to (f\circ g)(x)=|x|^2=x^2$ , $x=0$'da türevlenebildiği açık
$(f\circ g)'=g'(x).f'(g(x))$ bu yazdığıma göre $g=|x|$,$x=0$'da türevi yok o halde $(f\circ g)$'un türevini $x=0$'da nasıl yazabildik?