Ben böyle buldum ?
${\large I=\int_0^{\pi/2}ln^2(tan(x)) dx}$
${\large I=\int_0^{\pi/2} \Large(\large ln(sin(x))-ln(cos(x))\Large)^2 dx}$
${\large I=\int_0^{\pi/2} ln^2(sin(x))+ln^2(cos(x))-2ln(sin(x))ln(cos(x))dx }$
${\large I=\int_0^{\pi/2}ln^2(sin(x))dx+\int_0^{\pi/2} ln^2(cos(x))dx-2\int_0^{\pi/2} ln(sin(x))ln(cos(x))dx }$
${\large\int_0^{\pi/2}ln^2(sin(x))dx=\int_0^{\pi/2}ln^2(cos(x))dx }$
${\large I=2\int_0^{\pi/2}ln^2(sin(x))dx-2\int_0^{\pi/2}ln(sin(x))ln(cos(x))dx }$