Bir yol buldum sanırım! Yorumumda bahsi geçen sorudaki teoremleri hatırlatırım (Lütfen bakınız. Buraya tekrar yazmayacağım).
Öncelikle, $$\sqrt{2}=[1;2,2,2,2,2,\dots]$$ olduğu bilinmektedir (*).
Yukarıdaki linkte verilen Teorem 1 bizim için önemli ve belirleyici olacak. Teorem 2 hiç kullanılmayacak. Onun için de teorem deyince Teorem 1 kasdedilecektir. Başlayalım...
Öncelikle, teorem yardımıyla $(p_n, q_n)$ ikililerini birkaç terim için hesaplayıp bir motif bulmaya çalışacağım. Burada hesapları açıkça yazmayacağım: $$\begin{align} p_0&=1 &q_0=1\\ p_1&=3 &q_1=2\\ p_2&=7 &q_2=5\\ p_3&=17 &q_3=12\end{align}$$ diye gidiyor (umuyoruz!).
Bu dizide şu düzen dikkati çekiyor:
ÖNERME: Her $n$ için $$\begin{align}q_{n+1}&=p_n+q_n\\p_{n+1}&=q_n+q_{n+1}=p_n+2q_n\end{align}$$ eşitlikleri geçerlidir.
İSBAT: Tümevarımı kullanacağız. $n=0$ için önerme doğrudur. $$\begin{align}q_{n}&=p_{n-1}+q_{n-1}\\p_{n}&=p_{n-1}+2q_{n-1}\end{align}$$önermesi doğru olsun.
Bu son denklem takımından $(p_{n-1}, q_{n-1})$ ikililerini $(p_n,q_n)$ cinsinden çekersek $$\begin{align}p_{n-1}&=2q_n-p_{n}\\q_{n-1}&=p_n-q_n\end{align}$$alınır. Bunları en başta vermediğimiz ama zikri geçen $(p_{n+1},q_{n+1})$ tanımına koyarsak istenen kolaylıkla gösterilmiş olur.
Sonuçta, ardışık ikilileri (üçlüleri değil!) birbirine bağlayan bir tekrarlama bağıntısı elde ettik. Biz yine hesapladığımız diziye ve onda bulduğumuz düzene dönelim.
----------------------------------------------------------------------------------------------------------------------
SONUÇ: Yukarıda isbât edilen ÖNERME'yi kullanarak, (1,1) ikilisinden başlayarak istenen $(p_n,q_n)$ ikilisi çabucak bulunur. Sonra da $p_n/q_n$ rasyonel sayısı açıkça bölme yaparak hesaplanır.
ÖRNEK: $n=5$ olsun. O halde, $(p_5,q_5)=(99,70)$ bulunur. Bu bölmeyi yaparsak, 10-20 saniye içerisinde $$\frac{99}{70}=1,\overline{414285714}$$ olduğu görülür.
----------------------------------------------------------------------------------------------------------------------
(*) NOT: Bilinmese bile bu zincir kesrin toplamına $x$ dersek, Buradan kolaylıkla $x-1=\frac{1}{x+1}$ ve $x^2=2$ eşitliği alınır.