1) $a_i\in\mathbb{R}$ ve $n\in\mathbb{N}$ olmak üzere
$$a_0.y^{(n)}+a_1.y^{(n-1)}+\ldots +a_{n-1}.y'+y=0$$ diferensiyel denklemine sabit katsayılı $n.$ mertebeden homojen diferensiyel denklem denir.
2) $a_i\in\mathbb{R}$ ve $n\in\mathbb{N}$ olmak üzere
$$a_0.y^{(n)}+a_1.y^{(n-1)}+\ldots +a_{n-1}.y'+y=f(x) \,\,\,\ (f(x)\neq 0)$$ diferensiyel denklemine sabit katsayılı $n.$ mertebeden homojen olmayan diferensiyel denklem denir.