Jensen gibi ``ağır top " kullanmak yerine, daha elemanter çözümler verilebilir. Önce, ufak bir hatayı giderelim: $a,b$ ve $c$ nin mutlak değerleri $1$'den küçük olmalıdır. Aksi halde, sol taraf negatif olabilir.
I.YOL:
"Aritmetik ortalama" $\geq $ "Harmonik ortalama " eşitsizliginden
$
\frac{1}{1-a^{2}}+\frac{1}{1-b^{2}}+\frac{1}{1-c^{2}}\geq \frac{9}{
3-(a^{2}+b^{2}+c^{2})}
$
Burada $(a+b+c)^{2}\leq 3.(a^{2}+b^{2}+c^{2})$ basit eşitsizliği kullanılırsa, istenen çıkar.
II. YOL
Cauchy eşitsizliğine denk olan
\[
\frac{x_{1}^{2}}{a_{1}}+\cdots +\frac{x_{n}^{2}}{a_{n}}\geq \frac{
(x_{1}+\cdots +x_{n})^{2}}{a_{1}+\cdots +a_{n}}
\]
eşitsizliği kullanılırsa
\[
\frac{1}{1-a^{2}}+\frac{1}{1-b^{2}}+\frac{1}{1-c^{2}}\geq \frac{(1+1+1)^{2}}{
3-(a^{2}+b^{2}+c^{2})}
\]
olur ve devamı, I. yoldaki gibi sürdürülür.