Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
2.4k kez görüntülendi

Turevde neden sureklilik onemseniyor? Turevin tanimini $$\lim\limits_{h\to 0}\frac{f(x+h)-f(x-h)}{2h}$$ olarak verilmeyip (ya da baska sekilde) $$\lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h}$$ olmasinin ozel bir sebebi var mi? 

Lisans Matematik kategorisinde (25.5k puan) tarafından  | 2.4k kez görüntülendi
bence iş tanım kümesinin $\mathbb{R}$ olup olmamasında en azından fonksiyonun tanımlandıgı aralıkta  $\mathbb{R}$ nin altkümesi olup olmamasında.

1 cevap

3 beğenilme 0 beğenilmeme
En İyi Cevap

Turevin tanımını $$\lim\limits_{h\to 0}\frac{f(x+h)-f(x-h)}{2h}$$ olarak yaparsak $f(x)=|x|$ fonksiyonu (ve $g(x)=x^{\frac23}$ fonksiyonu) için 0 daki türevi var ve türevi 0 olur!


(6.2k puan) tarafından 
tarafından seçilmiş

Daha da ilginci, (türev böyle tanımlanırsa) (0 da nasıl tanımlarsak tanımlayalım) 0 da süreksiz olan $\frac1{x^2}$ fonksiyonu 0 da türevlenebilir ve türevi de 0 olur.

20,274 soru
21,803 cevap
73,476 yorum
2,428,311 kullanıcı