Herhangi bir $s\in \mathbb N$ \ $ \{0\}$ sayısı için şu eşitliği gösterin:
$\dbinom{s}{1}-\dbinom{s}{2}+\dbinom{s}{3}-\dbinom{s}{4}+.-......+(-1)^{s+1}\dbinom{s}{s}=1$
Binom acilimi ile $$0=(1-1)^s=1+(-1)\binom s1+(-1)^2\binom s2+\cdots +(-1)^s\binom ss$$ olur. Bu ifadeyi $-1$ ile carparsak istenilen elde edeilir.
-1 ile neden çarpıyoruz? direk sola atalım 1haricindekileri, gerçi aynı şey :)
Fakat senin verdigin toplamin terimleri $\displaystyle(-1)^{k+1}\binom sk$ seklince. Sola atmak da $-1$ ile carpmak zaten, bi nevi.