Tanım: $X$ herhangi bir küme; $``\curlyvee"$ ve $ ``\curlywedge",$ $X$ kümesi üzerinde iki ikili işlem; $\perp$, $X$ kümesi üzerinde bir birli işlem ve $0,1\in X$ olmak üzere
$\mathbf{BC_1)}$ $(\forall x\in X)(x\curlyvee x=x)(x\curlywedge x=x)$
$\mathbf{BC_2)}$ $(\forall x,y\in X)(x\curlyvee y=y\curlyvee x)(x\curlywedge y=y\curlywedge x)$
$\mathbf{BC_3)}$ $(\forall x,y,z\in X)((x\curlyvee y)\curlyvee z=x\curlyvee (y\curlyvee z))((x\curlywedge y)\curlywedge z=x\curlywedge (y\curlywedge z))$
$\mathbf{BC_4)}$ $(\forall x,y\in X)((x\curlywedge y)\curlyvee x=x)((x\curlyvee y)\curlywedge x=x)$
$\mathbf{BC_5)}$ $(\forall x,y,z\in X)(x\curlywedge (y\curlyvee z)=(x\curlywedge y)\curlyvee (x \curlywedge z))(x\curlyvee (y\curlywedge z)=(x\curlyvee y)\curlywedge (x \curlyvee z))$
$\mathbf{BC_6)}$ $(\forall x\in X)(0\curlyvee x=x)(0\curlywedge x=0)(1\curlyvee x=1)(1\curlywedge x=x)$
$\mathbf{BC_7)}$ $(\forall x\in X)(\exists x^{\perp}\in X)(x\curlywedge x^{\perp}=0)(x\curlyvee x^{\perp}=1)$
koşullarını sağlayan $$(X,\curlyvee, \curlywedge, \perp,0,1)$$ altılısına Boole cebiri denir.
Biçimsel olarak
$$(X,\curlyvee, \curlywedge,\perp,0,1) \,\ \text{Boole Cebiri}$$
$$:\Leftrightarrow$$
$$(\forall x\in X)(x\curlyvee x=x)(x\curlywedge x=x)$$
$$(\forall x,y\in X)(x\curlyvee y=y\curlyvee x)(x\curlywedge y=y\curlywedge x)$$
$$(\forall x,y,z\in X)((x\curlyvee y)\curlyvee z=x\curlyvee (y\curlyvee z))((x\curlywedge y)\curlywedge z=x\curlywedge (y\curlywedge z))$$
$$(\forall x,y\in X)((x\curlywedge y)\curlyvee x=x)((x\curlyvee y)\curlywedge x=x)$$
$$(\forall x,y,z\in X)(x\curlywedge (y\curlyvee z)=(x\curlywedge y)\curlyvee (x \curlywedge z))(x\curlyvee (y\curlywedge z)=(x\curlyvee y)\curlywedge (x \curlyvee z))$$
$$(\forall x\in X)(0\curlyvee x=x)(0\curlywedge x=0)(1\curlyvee x=1)(1\curlywedge x=x)$$
$$(\forall x\in X)(\exists x^{\perp}\in X)(x\curlywedge x^{\perp}=0)(x\curlyvee x^{\perp}=1)$$
şeklinde ifade edilir.
Örneğin $E$ herhangi bir küme olmak üzere $2^E$ kuvvet kümesi, kesişim, birleşim ve tümleme işlemleriyle bir Boole cebiridir yani $$\left(2^E,\cup,\cap,\setminus,\emptyset,E\right)$$ cebirsel yapısı bir Boole cebiridir.