İfadeyi düzenlersek;
$\dfrac{1}{\dbinom{N}{k}}\displaystyle\sum_{m=k}^N m\dbinom{m-1}{k-1}=\dfrac{kN+k}{k+1}$
Ve biliyoruz ki;
$\dbinom{m}{k}=\dfrac{m(m-1)!}{k(k-1)!(m-k)!}=\dfrac{m}{k}\dbinom{m-1}{k-1}$
Hatta bunu genelleştirip;
$\dbinom{m}{r}=\dfrac{P(m,m-u)}{P(r,r-u)}\dbinom{m-u}{r-u}$ diyebiliriz, neyse;
$\dfrac{1}{\dbinom{N}{k}}\displaystyle\sum_{m=k}^N m\dbinom{m-1}{k-1}=\dfrac{1}{\dbinom{N}{k}}\displaystyle\sum_{m=k}^N k\dbinom{m}{k}=\dfrac{k(N+1)}{k+1}$
hertarafı $k$ ya bölelim ve eşitliğe bakalım;
$\displaystyle\sum_{m=k}^N \dbinom{m}{k}=\dbinom{N}{k}\dfrac{N+1}{k+1}=\dbinom{N+1}{k+1}$
http://matkafasi.com/100405/serinin-esitligi-ispatim-gosterilir-dbinom-displaystyle
buradaki soruda gösterdim ki;
$\displaystyle\sum_{m=k}^N \dbinom{m}{k}=\dbinom{N+1}{k+1}$
İspatlanır.$\Box$