Gerek ve yeter kısım dendiğine göre iki adımda kanıtlayacağız.
Gerek Kısmı: $d_1\overset{L}{\sim} d_2$ olsun.
$\left.\begin{array}{rr} d_1\overset{L}{\sim} d_2\Rightarrow (\exists\lambda,\mu\in\mathbb{R}^+)(\forall x,y\in X)(\lambda d_1(x,y)\leq d_2(x,y)\leq \mu d_1(x,y)) \\ \\ k:=1+\mu+\frac1\lambda \end{array}\right\}\Rightarrow$
$\Rightarrow(k\geq 1)(\forall x,y\in X)(\frac1kd_1(x,y)\leq \lambda d_1(x,y)\leq d_2(x,y)\leq \mu d_1(x,y)\leq kd_1(x,y)).$
Yeter Kısmı:
$\left.\begin{array}{rr} \left(\lambda :=\frac1k\right)(\mu:=k) \\ \\ \text{Hipotez} \end{array}\right\}\Rightarrow (\lambda,\mu\in\mathbb{R}^+)(\forall x,y\in X)(\lambda d_1(x,y)\leq d_2(x,y)\leq \mu d_1(x,y)).$