$180^\circ$ ve tam katları hariç kaç derece döndürülürse döndürülsün fonksiyon olmaktan çıkacaktır, bunu gösterelim.
Bir grafiğe bakarak grafiği çizilen eğrinin fonksiyon olup olmadığını $x$ eksenine dik çizgiler çizerek kontrol edebiliriz. Eğer herhangi bir dikme için bu dikme, eğriyi $2$ veya daha fazla yerde kesiyorsa o halde bu eğri fonksiyon değildir. $y=x^2$ fonksiyonunu $\theta$ derece döndürünce fonksiyon olup olmadığını kontrol etmek için eğriyi döndürmeye gerek yoktur. Çizdiğimiz dikmeleri eğmemiz yeterlidir. Bir dikmeyi saat yönünde $\alpha$ derece eğmemiz demek, eğiminin $\tan{(90^\circ-\alpha)}$ olması demektir (Saat yönünün tersinde döndürmeyi incelemeye gerek yok çünkü $\alpha$'yı yeterince büyültürsek aynı sonuca varırız). Eğer bu döndürme sonucunda fonksiyon elde edersek, orijinden geçen ve "eğdiğimiz" dikme, fonksiyonu sadece orijinde kesecektir.
Orijinden geçen ve $\alpha$ derece eğrilmiş doğrunun denklemi $y=x\tan{(90-\alpha)}$ olacaktır. Bu doğrunun parabolu kestiği noktalar $y=x^2=x\tan{(90-\alpha)}$ denklemini sağlar. Buradan $(x,y)=(0,0)$ ve $(x,y)=(\tan{(90-\alpha)}, \tan^2{(90-\alpha)})$ olacaktır. Tek noktada kesişmeleri için $\tan{(90-\alpha)}=0$ olmalıdır veya $\tan{(90-\alpha)}$ tanımlı olmamalıdır. Buradan da $n\in \mathbb{N}$ için $\alpha=\frac{\pi n}{2}$ elde edilir. Bu da fonksiyonu $180^\circ$ veya tam katlarında dereceyle çevirmek demektir. Gerçekten de $180^\circ$ için fonksiyon $y=-x^2$ olur.