$a,b,c$ negatif olmayan sayılar olmak üzere $$3(b+c)(a+c)(a+b)\le 8(a^3+b^3+c^3)$$ eşitsizliğini kanıtlayınız.
İlgili soru
Aritmetik ve geometrik ortalama eşitsizliğinden $$2(a^3+b^3+c^3)\ge 6abc.....(*)$$ yazılabilir. İlgili sorudaki eşitsizlikler kullanılarak $$3(a^2b+b^2c+c^2a)\le 3(a^3+b^3+c^3)....(**)$$ $$3(ab^2+bc^2+ca^2)\le 3(a^3+b^3+c^3)....(***)$$ ve (*)+(**)+(***) işlemi yapılarak $$8(a^3+b^3+c^3)\ge 3(b+c)(a+c)(b+a)$$ bulunur.