Bu halka icin global boyut 1 olur gibi geldi bana ama yanlis hesap yapiyorum tahminen. $R$ halkasini $(a_n)_{n\geq 0}$ formundaki sonsuz kompleks diziler halkasi olarak alsak (koordinatlarda toplama ve carpma), o zaman $\mathbb C$ then $R$ ye her kompleks sayiyi o sayinin sabit dizisine goturen bir halka homomorfizmasi var. Yani her $R$-modulu dogal olarak bir kompleks vektor uzayi olarak gorulebilinir. Bir de her $i\geq 0$ tamsayisi icin $R$ the $\mathbb C$'ye $(a_n)$ dizisini $a_i$'ye goturen ring homomorfizmasi var. Bu homomorfizmalarin herhangi biri ile $\mathbb C$'yi $R$ modul olarak alirsak, bu module $\mathbb C_i$ diyelim, $\mathbb C_i$ nin $0 \to R \to R \to \mathbb C _i\to 0$ formunda bir projektif acilimi var. Hangi moduller icin projektif uzunluk birden buyuk oluyor yazabilir misin?