Şöyle başlıyim öyleyse izninizle söze:
Kompleks analiz ile ilgili sorduğunuz herhangi bir çok elementer soru bile öyle bir dallanır budaklanır ki hangi daldan tutacağınızı şaşırırsınız cevaplarken.
Şimdi, ilk olarak, Euler formülü $e^{ix}=\cos x+i\sin x,\quad x\in\mathbb R$ den dolayı komplexde tanımladığınız $f(z)=e^z$ fonksiyonu periyodiktir (Kompleks sayılarda tanımlı fonksiyonlar periyodik de ne demekse!:)). Dolayısıyla bu fonksiyon 1-1 değildir. Yani $f:\mathbb C\rightarrow \mathbb C,\ f(z)=e^z$, bildiğimiz anlamda, tersinir değildir. Böyle fonksiyonların terslerine "çok değerli fonksiyon" denir. Yani $log z$ dediğimiz fonksiyon bir çok değerli fonksiyondur ve
$$log z=ln |z|+i arg(z)$$
olarak tanımlanır. Bunun bir dalı ise
$$Log z=ln |z|+i Arg(z),\quad z\in \mathbb C-(-\infty, 0]$$
şeklinde tanımlanır. Buna logaritmanın esas (principal ın çevirisi için yardım lütfen) dalı denir.
Burada $arg (z)$, $2\pi$ periyotlu iken $Arg(z)$ tek değerlidir ve değerlerini $(-\pi,\pi )$ arasında alır. Örneğin, $arg (1)=0+2n\pi$ iken $Arg(1)=0$'dır.
(Çok değerli fonksiyonların dalı nasıl tanımlanır, logaritmanın tam (İng Entire) bir dalı var mıdır soruları ayrı birer sorulardır.)