Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu

Answers posted by murad.ozkoc

1654
answers
145
best answers
0 votes
cevaplandı 26 Ağustos 2015
$$|x+2|<6\Rightarrow -6<x+2<6\Rightarrow -8<x<4$$ koşulunu sağlayan tamsayılar bell
0 votes
cevaplandı 26 Ağustos 2015
$$((g\circ f)\circ (f^{-1}\circ h))(x)=(g\circ h)(x)=3(x+3)-2=3x+7$$ $$\Rightarrow$$ $$(g\circ...
0 votes
cevaplandı 26 Ağustos 2015
$X:=[(X,\oplus),\odot,(\mathbb{R},+,\cdot),\langle .,.\rangle]$ iç çarpım uzayı olmak üzere $$n(x):
0 votes
cevaplandı 25 Ağustos 2015
$x^2-10x=9\sqrt{x}\Rightarrow x^2-x=9x+9\sqrt{x}=9(x+\sqrt{x})\ldots (1)$ $(x+\sqrt{x})(x-\sqrt{x...
0 votes
cevaplandı 24 Ağustos 2015
$$\dfrac{7x^2+6xy+3y^2}{y^2-x^2}=2\Rightarrow 9x^2+6xy+y^2=0\Rightarrow (3x+y)^2=0$$ olduğuna göre
0 votes
cevaplandı 21 Ağustos 2015
$$\frac{a}{4}=\frac{b}{5}$$ ve $$3b=5c$$ ve $$a+b+c=84$$ olduğuna göre $$a=\ldots$$ bu
0 votes
cevaplandı 21 Ağustos 2015
$$\frac{x^2(x^2-3+\frac{1}{x^2})}{x^2(x+1-\frac1x)}=\frac{x^2-3+\frac{1}{x^2}}{x+1-\frac1x}=\frac...
0 votes
cevaplandı 21 Ağustos 2015
Hayır. Yoktur. Çünkü küre $2$-manifolddur çember ise $1$-manifold. Dolayısıyla bunlar homeomorfik
0 votes
cevaplandı 21 Ağustos 2015
$M=6^7-6=6\cdot (6^6-1)=6\cdot ((6^3)^2-1)=6\cdot (6^3-1)\cdot (6^3+1)=\ldots$
0 votes
cevaplandı 21 Ağustos 2015
$(X,n)$ normlu uzay olmak üzere $$d(x,y):=n(x\oplus (-y))$$ kuralı ile verilen
0 votes
cevaplandı 21 Ağustos 2015
Cevap evet. Şöyle ki: $$\left.\begin{array}{rr}A\in\mathcal{K}\Rightarrow \mathcal{K}_A\subset
0 votes
cevaplandı 21 Ağustos 2015
$$a * 2b = 0$$ $$\Rightarrow$$ $$ a^2-5a(2b)+(2b)^2=0$$ $$\Rightarrow$$ $$ 4b^2-10ab+a^2=0
0 votes
cevaplandı 21 Ağustos 2015
İşe bir topolojik uzayda bağlantısız küme ve bağlantılı küme tanımlarını vererek başlayalım.
0 votes
cevaplandı 21 Ağustos 2015
Ben de tanımı biçimsel olarak vereyim: Tanım: $(X,\tau)$ topolojik uzay ve $(X,\star)$ gru
1 vote
cevaplandı 20 Ağustos 2015
Tanım (Norm, Normlu Uzay): $(X,\oplus)$ grup; $\theta$, $\oplus$ işleminin birim elemanı;
0 votes
cevaplandı 11 Ağustos 2015
$$\dfrac{\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}}{2}=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{2\s...
1 vote
cevaplandı 11 Ağustos 2015
Evet. Boşküme her kümenin altkümesidir. İşe altküme tanımı ile başlayalım. $$A\subseteq B
0 votes
cevaplandı 10 Ağustos 2015
$A\in \tau_1$ olsun. Acaba her zaman $f[A]\in \tau_2$ oluyor mu olmuyor mu? Ona bakacağız. $g\c
0 votes
cevaplandı 10 Ağustos 2015
$$a^2+6(a+b)+b^2=-18$$$$\Rightarrow$$$$ a^2+6a+6b+b^2+18=0$$ $$\Rightarrow$$ $$a^2+
1 vote
cevaplandı 8 Ağustos 2015
Tanım: $A\subseteq \mathbb{R}$  alttan (veya üstten) sınırsız bir küme, $f:A\rightarrow \m
20,275 soru
21,804 cevap
73,482 yorum
2,430,862 kullanıcı